数据集

import numpy as np
from matplotlib import pyplot as plt
import sklearn.datasets

#生成100个一元回归数据集
x,y = sklearn.datasets.make_regression(n_features=1,noise=5,random_state=2020)
plt.scatter(x,y)
plt.show()

#加5个异常数据,为什么这么加,大家自己看一下生成的x,y的样子
a = np.linspace(1,2,5).reshape(-1,1)
b = np.array([350,380,410,430,480])

#生成加入异常数据后新的数据集
x_1 = np.r_[x,a]
y_1 = np.r_[y,b]

plt.scatter(x_1,y_1)
plt.show()

class normal():
    def __init__(self):
        pass

    def fit(self,x,y):
        m=x.shape[0]
        X = np.concatenate((np.ones((m,1)),x),axis=1)
        xMat=np.mat(X)
        yMat =np.mat(y.reshape(-1,1))

        xTx=xMat.T*xMat
        #xTx.I为xTx的逆矩阵
        ws=xTx.I*xMat.T*yMat
        
        #返回参数
        return ws
         


plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
clf1 =normal()
#拟合原始数据
w1 = clf1.fit(x,y)
#预测数据
y_pred = x * w1[1] + w1[0]

#拟合新数据
w2 = clf1.fit(x_1,y_1)
#预测数据
y_1_pred = x_1 * w2[1] + w2[0]

print('原始样本拟合参数:\n',w1)
print('\n')
print('新样本拟合参数:\n',w2)

ax1= plt.subplot()
ax1.scatter(x_1,y_1,label='样本分布')
ax1.plot(x,y_pred,c='y',label='原始样本拟合')
ax1.plot(x_1,y_1_pred,c='r',label='新样本拟合')
ax1.legend(prop = {'size':15}) #此参数改变标签字号的大小
plt.show()

已标记关键词 清除标记
相关推荐
<p style="font-size:14px;background-color:#FFFFFF;color:#333333;"> <span>U-Net是一种基于深度学习的图像语义分割方法,尤其在医学图像分割中表现优异。</span> </p> <p style="font-size:14px;background-color:#FFFFFF;color:#333333;"> <span>本课程将手把手地教大家使用labelme图像标注工具制作自己的数据集,生成Mask图像,并使用U-Net训练自己的数据集,从而能开展自己的图像分割应用。</span> </p> <p style="font-size:14px;background-color:#FFFFFF;color:#333333;"> <span>本课程有三个项目实践:</span> </p> <p style="font-size:14px;background-color:#FFFFFF;color:#333333;"> <span>(1) Kaggle盐体识别比赛 :利用U-Net进行Kaggle盐体识别</span> </p> <p style="font-size:14px;background-color:#FFFFFF;color:#333333;"> <span>(2) Pothole语义分割:对汽车行驶场景中的路坑进行标注和语义分割</span> </p> <p style="font-size:14px;background-color:#FFFFFF;color:#333333;"> <span>(3) Kaggle细胞核分割比赛 :利用U-Net进行Kaggle细胞核分割</span> </p> <p style="font-size:14px;background-color:#FFFFFF;color:#333333;"> <span>本课程使用keras版本的U-Net,在Ubuntu系统上用Jupyter Notebook做项目演示。 包括:数据集标注、数据集格式转换和Mask图像生成、编写U-Net程序文件、训练自己的数据集、测试训练出的网络模型、性能评估。</span> </p> <p style="font-size:14px;background-color:#FFFFFF;color:#333333;"> <span>本课程提供项目的数据集和Python程序文件。</span> </p> <p style="font-size:14px;background-color:#FFFFFF;color:#333333;"> <span><img src="https://img-bss.csdn.net/201907221510227991.jpg" alt="" /><br /> </span> </p>
<p> <span style="font-size:18px;color:#E53333;"><strong><span style="color:#000000;">课程演示环境:Ubuntu</span><br /> <br /> <span style="color:#000000;">需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:训练自己的数据集》,课程链接https://edu.csdn.net/course/detail/28748</span><br /> <br /> YOLOv4</strong></span><span style="font-size:18px;color:#E53333;"><strong>来了!速度和精度双提升!</strong></span> </p> <p> <span style="font-size:16px;"> </span> </p> <p> <span style="font-size:16px;">与</span><span style="font-size:16px;"> YOLOv3 </span><span style="font-size:16px;">相比,新版本的</span><span style="font-size:16px;"> AP(精度) </span><span style="font-size:16px;">和</span><span style="font-size:16px;"> FPS </span><span style="font-size:16px;">(每秒帧率)分别提高了</span><span style="font-size:16px;"> 10% </span><span style="font-size:16px;">和</span><span style="font-size:16px;"> 12%</span><span style="font-size:16px;">。</span><span></span> </p> <p> <span style="font-size:16px;"> </span> </p> <p> <span style="font-size:16px;">YOLO系列是基于深度学习的端到端实时目标检测方法。本课程将手把手地教大家使用</span><span style="font-size:16px;">labelImg</span><span style="font-size:16px;">标注和使用</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。</span><span></span> </p> <p> <span style="font-size:16px;"> </span> </p> <p> <span style="font-size:16px;">本课程的</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">使用</span><span style="font-size:16px;">AlexAB/darknet</span><span style="font-size:16px;">,在</span><span style="font-size:16px;">Ubuntu</span><span style="font-size:16px;">系统上做项目演示。包括:安装</span><span style="font-size:16px;">YOLOv4、</span><span style="font-size:16px;">标注自己的数据集、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计</span><span style="font-size:16px;">(mAP</span><span style="font-size:16px;">计算和画出</span><span style="font-size:16px;">PR</span><span style="font-size:16px;">曲线</span><span style="font-size:16px;">)</span><span style="font-size:16px;">和先验框聚类分析。还将介绍改善</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标训练性能的技巧。</span><span></span> </p> <p> <span style="font-size:16px;"> </span> </p> <p> <span style="font-size:16px;">除本课程《</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标检测实战:训练自己的数据集》外,本人将推出有关</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标检测的系列课程。请持续关注该系列的其它视频课程,包括:</span><span></span> </p> <p> <span style="font-size:16px;">《</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标检测实战:人脸口罩佩戴识别》</span><br /> <span style="font-size:16px;">《</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标检测实战:中国交通标志识别》</span><br /> <span style="font-size:16px;">《</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标检测:原理与源码解析》</span> </p> <p> <br /> </p> <p> <span style="font-size:16px;"><br /> </span> </p> <p> <span style="font-size:16px;"><img src="https://img-bss.csdn.net/202004260858382698.jpg" alt="" /><br /> </span> </p> <p> <span style="font-size:16px;"><br /> </span> </p> <p> <span style="font-size:16px;"><img src="https://img-bss.csdn.net/202004260858535136.jpg" alt="" /><br /> </span> </p> <p> <span style="font-size:16px;"><img src="https://img-bss.csdn.net/202004260859074920.jpg" alt="" /><br /> </span> </p> <p> <span></span> </p> <p> <span></span> </p>
<p> <b><span style="background-color:#FFE500;">【超实用课程内容】</span></b> </p> <ul> <li> <span style="font-size:14px;"><span>深度学习在图像处理领域的发</span><span>展过程;</span></span> </li> <li> <span style="font-size:14px;"><span>解析经典的卷积神经网络;</span></span> </li> <li> <span style="font-size:14px;"><span>垃</span><span>圾分类实战。本课程将使用Pytorch深度学习框架进行实战,并在ubuntu系统上</span><span>进行演示,包括:不同标注文件下的数据集读取、编写卷积神经网络、训练垃圾分类数据集、测试训练网络模型、网络可视化、性能评估等。</span></span> </li> </ul> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="color:#000000;background-color:#FFE500;"><b><br /> </b></span> </p> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="color:#000000;background-color:#FFE500;"><b>【课程如何观看?】</b></span> </p> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="color:#000000;">PC端:<a href="https://edu.csdn.net/course/detail/26277"><span id="__kindeditor_bookmark_start_21__"></span></a><a href="https://edu.csdn.net/course/detail/26295">https://edu.csdn.net/course/detail/26295</a></span> </p> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="color:#000000;">移动端:CSDN 学院APP(注意不是CSDN APP哦)</span> </p> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <br /> </p> <p class="ql-long-24357476" style="font-family:"color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="line-height:24px;background-color:#FFE500;font-size:14px;"><span style="line-height:24px;"><strong>【学员专享增值服务】</strong></span></span> </p> <p class="ql-long-24357476" style="font-family:"color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="line-height:24px;font-size:14px;"><b>源码开放</b></span> </p> <p class="ql-long-24357476" style="font-family:"color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="line-height:24px;font-size:14px;">课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化</span> </p> <p class="ql-long-24357476" style="font-family:"color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="line-height:24px;"><span style="font-size:14px;">下载方式:电脑登录<span style="color:#000000;"><a href="https://edu.csdn.net/course/detail/26277"></a><a href="https://edu.csdn.net/course/detail/26295">https://edu.csdn.net/course/detail/26295</a></span></span><span style="font-size:14px;">,点击右下方</span><span style="line-height:24px;background-color:#CCCCCC;font-size:14px;">课程资料、代码等打包下载</span></span> </p> <p> <br /> </p> <p> <br /> </p>
<span style="color:#E53333;"><strong>告知:需要学习YOLOv4进行TT100K数据集上中国交通标志识别的学员请前往</strong></span><br /><br /><span style="color:#E53333;"><strong>(1) Ubuntu系统《YOLOv4目标检测实战:中国交通标志识别》课程链接:https://edu.csdn.net/course/detail/29362</strong></span> <p> <span style="color:#E53333;"><strong>(2)《Windows版YOLOv4目标检测实战:中国交通标志识别》</strong></span><span style="color:#E53333;"><strong>课程链接:https://edu.csdn.net/course/detail/29363</strong></span><span style="color:#E53333;"><strong></strong></span> </p> <br /> 在无人驾驶中,交通标志识别是一项重要的任务。本课程中的项目以<strong><span style="color:#E53333;">美国交通标志数据集LISA</span></strong>为训练对象,采用<strong><span style="color:#E53333;">YOLOv3</span></strong>目标检测方法实现实时交通标志识别。<br /><br /> 具体项目过程包括包括:安装Darknet、下载LISA交通标志数据集数据集格式转换、修改配置文件、训练LISA数据集、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类。<br /><br /> YOLOv3基于深度学习,可以实时地进行端到端的目标检测,以速度快见长。本课程将手把手地教大家使用YOLOv3实现交通标志的多目标检测。本课程的YOLOv3使用Darknet,在Ubuntu系统上做项目演示。 Darknet是使用C语言实现的轻型开源深度学习框架,依赖少,可移植性好,值得深入学习和探究。<br /><br /> 除本课程《YOLOv3目标检测实战:交通标志识别》外,本人推出了有关YOLOv3目标检测的系列课程,请持续关注该系列的其它课程视频,包括:<br /><br /> 《YOLOv3目标检测实战:训练自己的数据集》<br /><br /> 《YOLOv3目标检测:原理与源码解析》<br /><br /> 《YOLOv3目标检测:网络模型改进方法》<br /><br /> 另一门课程《YOLOv3目标检测实战:训练自己的数据集》主要是介绍如何训练自己标注的数据集。而本课程的区别主要在于学习对已标注数据集的格式转换,即把LISA数据集从csv格式转换成YOLOv3所需要的PASCAL VOC格式和YOLO格式。本课程提供数据集格式转换的Python代码。<br /><br /> 请大家关注以上课程,并选择学习。<br /><br /> 下图是使用YOLOv3进行交通标志识别的测试结果<br /><p> <br /></p> <p> <img alt="" src="https://img-bss.csdn.net/201905291412089927.jpg" /><img alt="" src="https://img-bss.csdn.net/201905291412336785.jpg" /><img alt="" src="https://img-bss.csdn.net/201905291412485752.jpg" /></p> <p> <img alt="" src="https://img-bss.csdn.net/201905291413012686.jpg" /></p>
<span style="color:#E53333;"><span style="color:#000000;"> </span></span> <p style="font-size:16px;"> <span style="color:#3A4151;">课程演示环境:Ubuntu </span> </p> <p style="font-size:16px;"> </p><p> <span><span style="color:#0070C0;">需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:人脸口罩佩戴检测》</span></span> </p> <p> <span><span style="color:#0070C0;">课程链接:https://edu.csdn.net/course/detail/29123</span></span>  </p> <p style="font-size:16px;"> <span style="background-color:#FFFFFF;">当前,人脸口罩佩戴检测是急需的应用,而YOLOv4是最新的强悍的目标检测技术。本课程使用</span><strong><span style="color:#C00000;">YOLOv4实现实时的人脸口罩佩戴检测</span></strong><span style="background-color:#FFFFFF;">。课程提供</span><strong><span style="color:#C00000;">超万张已标注人脸口罩数据集</span></strong><span style="background-color:#FFFFFF;">。训练后的YOLOv4可对真实场景下人脸口罩佩戴进行</span><span style="background-color:#FFFFFF;">高精度地</span><span style="background-color:#FFFFFF;">实时检测。</span> </p> <p style="font-size:16px;"> <span style="background-color:#FFFFFF;"><br /></span> </p> <p style="font-size:16px;"> <span><span style="background-color:#FFFFFF;"><span style="font-size:16px;">本课程会讲述本项目超万张人脸口罩数据集的制作方法,包括使用labelImg标注工具标注以及如何使用Python代码对第三方数据集进行修复和清洗。</span><br /></span></span> </p> <p style="font-size:16px;"> <span><span style="background-color:#FFFFFF;"><br /></span></span> </p> <p style="font-size:16px;"> 本课程的YOLOv4使用AlexyAB/darknet,在Ubuntu系统上做项目演示。具体项目过程包括:安装YOLOv4、训练集和测试集自动划分、修改配置文件、训练网络模型、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类分析。  </p> <p style="font-size:16px;"> <br /></p> <p style="font-size:16px;"> <br /></p> <p style="font-size:16px;"> <img src="https://img-bss.csdn.net/202005200601524939.jpg" alt="" /></p> <p style="font-size:16px;"> <strong>YOLOv4人脸口罩佩戴检测效果</strong> </p> <p style="font-size:16px;"> <img src="https://img-bss.csdn.net/202005200603052758.jpg" alt="" /></p> <p style="font-size:16px;"> <br /></p> <span style="color:#000000;"></span>
©️2020 CSDN 皮肤主题: 护眼 设计师:闪电赇 返回首页
实付 19.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值